X-Ray Crystal Structure of 1,3,8,10-Tetraoxacyclotetradecane

By I. W. Bassi,* R. Scordamaglia, and L. Fiore, Montecatini Edison, Centro Ricerche, Via G. Colombo 81, Milano, Italy
The molecular and crystal structure of the title compound has been determined from X-ray diffractometer data. The structure was solved by Patterson and Fourier methods and refined by least-squares techniques to $R 0.058$ for 775 independent reflections. Crystals are monoclinic, space group $P 2_{1} / n$, with $Z=2$ in a unit cell of dimensions: $a=8 \cdot 107(3) . b=14 \cdot 721(6) . c=4 \cdot 724(1) A . \beta=100 \cdot 25(8)^{\circ}$. The ring structure resembles that of cyclotetradecane as derived from the diamond lattice.

We have recently synthesised some large-membered oxygen-containing cycloalkanes. ${ }^{1}$ The structure of these heterocyclic compounds is of interest both for comparison with those of cycloparaffins and in view of the possible correlations with the chain-folding phenomenon in polymeric materials. The crystal structure of $1,3,8,10$-tetraoxatetradecane (I) is now reported.

EXPERIMENTAL

Preliminary space group and unit-cell dimensions were obtained from Weissenberg photographs.

A crystal, essentially a parallelepiped, having dimensions ca. $0.30 \times 0.25 \times 0.50 \mathrm{~mm}$ was mounted on a Picker, FACS 1 four-circle computer-controlled diffractometer, equipped with a scintillation counter and a pulse-height analyser.

The orientation matrix and cell dimensions were obtained from a least-squares fit of χ, ϕ, ω, and 2θ values from 12 independent reflections.

Crystal Data.- $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}_{4}, M=204 \cdot 32$. Monoclinic $a=$ $8 \cdot 107(3), \quad b=14.721(6), \quad c=4.724(1) \AA, \quad \beta=100 \cdot 25(8)^{\circ}$, $U=554 \cdot 48 \AA^{3}, \quad D_{\mathrm{m}}=1 \cdot 20, \quad Z=2, \quad D_{\mathrm{c}}=1 \cdot 22 . \quad$ Space group $P 2_{1} / n$ from systematic absences: $0 k 0$ for k odd, $h 0 l$ for $h+l$ odd. Mo- K_{α} radiation, $\lambda=0.7107 \AA$; $\mu\left(\mathrm{Mo}-K_{\alpha}\right)=0.95 \mathrm{~cm}^{-1}$.

Intensity data were collected by use of zirconiumfiltered $\mathrm{Mo}-K_{\alpha}$ radiation, with $2 \theta \leqslant 70^{\circ}$. The moving-crystal-moving-counter technique was used with a 20 scan rate of $1^{\circ} \mathrm{min}^{-1}$ and a scan range of $2.0-2.50^{\circ}$, in order to allow for the greater separation of the $K_{\alpha 1}$ and $K_{\alpha 2}$ peaks at increasing 2θ values. Background counts of 10 s were measured at each end of every 2θ scan. Three standard reflections, measured after every 50 reflections, showed no fluctuation $> \pm 3 \%$ during data collection. 2372 Independent reflections were measured of which 775 were considered observed and had $I \geqslant 3 \sigma$. An arbitrary intensity equal to 0.5 the observable limit was assigned to the nonsignificant reflections. All intensities were corrected for Lorentz and polarization effects. No absorption correction was introduced.

Determination and Refinement of the Structure.-The structure was solved by Patterson and trial methods. A two-dimensional Patterson map was performed with the ($h k 0$) reflections. The set of interatomic vectors is consistent with the overlapping of two atoms at $x \approx 0.700$ and $y \approx 0.367$ in Fourier space.

As shown by Dunitz ${ }^{2}$ the structure of an n membered cycloparaffin with $n=4 m+2$ may be directly derived from the diamond structure. A fourteen-membered ring is built up from two parallel chains (lateral chains) each

[^0]containing 5 methylene groups, similar in structure to the planar zig-zag chains of the crystalline normal paraffins; the bridges (folds) linking the ends of these chains contain two methylene groups. Also the arrangement of the four carbon atoms of the bridges is a planar zig-zag chain. The symmetry of the ring is $2 / \mathrm{m}$. This has been verified by the structures found for 1,8-diazacyclotetradecane dihydrobromide ${ }^{3}$ and for 1,8 diazacyclotetradecane-1,8-diol. ${ }^{4}$

Figure 1 Conformation of cyclotetradecane as derived from the diamond lattice, showing some of the shortest $H \cdots H$ contact distances

A model of (I) was constructed on this basis, by considering all members of the ring skeleton as carbon atoms and involving bond angles and torsion angles undistorted in respect of those derived from the diamond lattice (Figure 1).

The x and y co-ordinates of the ring skeleton atoms were derived from the Patterson map and from the structurefactor graph of the $(5,15,0)$ outstanding reflection. Some structure-factor calculations performed on the $h k 0$ reflections confirmed the validity of the assumed ring structure.
Tentative z co-ordinates for the ring atoms were derived from packing considerations.
A three-dimensional Fourier synthesis based on the x, y, z co-ordinates derived in this way, yielded a clear picture of the whole ring and enabled definite identification of the oxygen and carbon atoms.
The positional and the isotropic thermal parameters of

[^1]the ring skeleton atoms were refined by some cycles of fullmatrix least-squares, by use of a program of Immirzi. ${ }^{5}$ Atomic scattering factors were calculated from the expression in ref. 6, using values for the parameters given in ref. 7. The weighting scheme of ref. 8 was adopted: $1 / W=A+B\left|F_{0}\right|+C\left|F_{0}\right|^{2}$, where $A=2 F_{0}(\min), B=$ $1 \cdot 0$, and $C=2 / F_{0}$ (max). At this point R was 0.140 for the 775 non-zero reflections.

Four cycles of full-matrix refinement were run, assuming anisotropic thermal parameters for all ring carbon and oxygen atoms, the hydrogen atoms being introduced into the calculations but not refined, their co-ordinates being defined on stereochemical grounds and according to a difference-Fourier synthesis.
The refinement converged to $R=0.064$. The final shifts of the atomic parameters were negligible, all being well below the corresponding σ. Four further cycles of full-matrix refinement were performed, only the hydrogen atoms being refined isotropically in order to obtain some indication of their σ values. The final R was 0.058 for the 775 non-zero reflections.

Table 1
Final fractional co-ordinates with estimated standard deviations in parentheses

		y	z	B / \AA^{2}
	x	y		
$\mathrm{O}(1)$	$0 \cdot 1890(2)$	$0 \cdot 4740(1)$	$0 \cdot 3778(4)$	
$\mathrm{O}(2)$	$0 \cdot 7216(2)$	$0 \cdot 3769(1)$	$0 \cdot 6714(4)$	
$\mathrm{C}(1)$	$0 \cdot 1456(3)$	$0 \cdot 5617(2)$	$0 \cdot 2673(6)$	
$\mathrm{C}(2)$	$0 \cdot 3143(3)$	$0 \cdot 4315(2)$	$0 \cdot 2473(6)$	
$\mathrm{C}(3)$	$0 \cdot 3711(4)$	$0 \cdot 3473(2)$	$0 \cdot 4180(6)$	
$\mathrm{C}(4)$	$0 \cdot 5198(4)$	$0 \cdot 2997(2)$	$0 \cdot 3260(6)$	
$\mathrm{C}(5)$	$0 \cdot 6783(4)$	$0 \cdot 3555(2)$	$0 \cdot 3718(6)$	
$\mathrm{H}(1)$	$0 \cdot 119(4)$	$0 \cdot 559(2)$	$0 \cdot 050(6)$	$2 \cdot 8(6)$
$\mathrm{H}\left(1^{\prime}\right)$	$0 \cdot 051(4)$	$0 \cdot 578(2)$	$0 \cdot 366(7)$	$2 \cdot 8(7)$
$\mathrm{H}(2)$	$0 \cdot 416(4)$	$0 \cdot 472(2)$	$0 \cdot 254(7)$	$3 \cdot 0(7)$
$\mathrm{H}\left(2^{\prime}\right)$	$0 \cdot 271(4)$	$0 \cdot 418(2)$	$0 \cdot 044(7)$	$3 \cdot 3(7)$
$\mathrm{H}(3)$	$0 \cdot 278(4)$	$0 \cdot 305(2)$	$0 \cdot 403(7)$	$2 \cdot 8(6)$
$\mathrm{H}\left(3^{\prime}\right)$	$0 \cdot 404(4)$	$0 \cdot 363(2)$	$0 \cdot 617(7)$	$2 \cdot 6(6)$
$\mathrm{H}(4)$	$0 \cdot 492(4)$	$0 \cdot 285(2)$	$0 \cdot 111(7)$	$3 \cdot 4(7)$
$\mathrm{H}\left(4^{\prime}\right)$	$0 \cdot 537(4)$	$0 \cdot 242(2)$	$0 \cdot 429(7)$	$3 \cdot 2(7)$
$\mathrm{H}(5)$	$0 \cdot 660(3)$	$0 \cdot 411(2)$	$0 \cdot 237(6)$	$2 \cdot 1(6)$
$\mathrm{H}\left(5^{\prime}\right)$	$0 \cdot 765(4)$	$0 \cdot 322(2)$	$0 \cdot 305(6)$	$2 \cdot 2(6)$

Table 2
Anisotropic thermal parameters * for the non-hydrogen atoms

	B_{11}	B_{22}	33	B_{12}	B_{13}	B_{23}
$\mathrm{O}(1)$	(7)	7)	4.99(9)	2(6))	0.57(7)
$\mathrm{O}(2)$	3.69(7)	3.59(7)	3-65(7)	-0.29(6)	0.45(5)	-13(6)
C(l)	$3 \cdot 30(9)$	$3 \cdot 75$ (10)	$5 \cdot 40$ (13)	0.17(9)		46(10)
C(2)	$4 \cdot 04(10)$	3-82(10)	4.08(11)	$0 \cdot 38(9)$	$1 \cdot 04(8)$	$0 \cdot 16$ (9)
C(3)	4.06(11)	3-23(9)	$4 \cdot 60$ (12)	-0.69(9)	$0 \cdot 17(9)$	$0 \cdot 58(9)$
C(4)	$5 \cdot 37(14)$	$3 \cdot 15(9)$	4•79(13)	$0 \cdot 25(10)$	$0 \cdot 11(10)$	$-0 \cdot 64(9)$
C(5)	$4 \cdot 64(12)$	$4 \cdot 46$ (12)	3•66(11)	$0 \cdot 75$ (10)	$1 \cdot 05(9)$	-0.27(9)
The temperature factor is in the form $T_{i}=\exp -1 / 4-$ $a^{* 2} h^{2}+B_{22} b^{* 2} k^{2}+B_{33} c^{* 2} l^{2}+2 B_{12} a^{*} b^{*} h k+2 B_{13} a^{*} c^{*} h l+$ $\left.{ }_{3} b^{*} c^{*} k l\right)$.						

Table 1 reports the final fractional co-ordinates and the corresponding estimated standard deviations of the atoms of the independent unit. Table 2 lists the anisotropic thermal parameters of the non-hydrogen atoms. Calculated and observed structure amplitudes are listed in
\dagger For details see Notice to Authors No. 7 in J. Chem. Soc. (A), 1970, Issue No. 20 (items less than 10 pp . are sent as full size copies).

5 A. Immirzi, Ricerca Sci., 1967, 37, 743.
${ }^{6}$ V. Vand, P. E. Eiland, and R. Pepinsky, Acta Cryst., 1957, 10, 303.

Supplementary Publication No. SUP 20452 (7 pp., 1 microfiche). \dagger

RESULTS AND DISCUSSION

Views of the molecule of (I) are shown in Figures 2 and 3. The geometric parameters of the molecule with their estimated standard deviations are reported in Table 3.

Figure 2 Projection along the c axis of the actual ring of (I)
Table 3
Most significant geometric parameters of the molecule (I); atoms labelled with a Roman I are related to the others in the molecule by a centre of inversion
(a) Bond lengths (\AA)

$\mathrm{O}(1)-\mathrm{C}(1)$	$1.414(3)$
$\mathrm{O}(1)-\mathrm{C}(2)$	$1.423(3)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.506(4)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.523(4)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.508(4)$
$\mathrm{C}(5)-\mathrm{O}(2)$	$1.431(3)$
$\mathrm{O}(2)-\mathrm{C}\left(\mathrm{l}^{1}\right)$	$1 \cdot 395(3)$
$\mathrm{C}(1)-\mathrm{H}(1)$	$1.00(3)$
$\mathrm{C}(1)-\mathrm{H}\left(1^{\prime}\right)$	$0.99(3)$
$\mathrm{C}(2)-\mathrm{H}(2)$	$1 \cdot 00(3)$
$\mathrm{C}(2)-\mathrm{H}\left(2^{\prime}\right)$	$0.98(3)$
$\mathrm{C}(3)-\mathrm{H}(3)$	$0.97(3)$
$\mathrm{C}(3)-\mathrm{H}\left(3^{\prime}\right)$	$0.95(3)$
$\mathrm{C}(4)-\mathrm{H}(4)$	$1 \cdot 02(3)$
$\mathrm{C}(4)-\mathrm{H}\left(4^{\prime}\right)$	$0.98(3)$
$\mathrm{C}(5)-\mathrm{H}(5)$	$1 \cdot 03(3)$
$\mathrm{C}(5)-\mathrm{H}\left(5^{\prime}\right)$	$0.95(3)$

(b) Bond angles (deg.)

$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{O}\left(2^{\mathrm{I}}\right)$	$112 \cdot 48(10)$
$\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{C}(2)$	$113 \cdot 02(10)$
$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$107 \cdot 66(09)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$114 \cdot 09(11)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$113 \cdot 96(11)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{O}(2)$	$108 \cdot 32(10)$
$\mathrm{C}(5)-\mathrm{O}(2)-\mathrm{C}\left(1^{\mathrm{I}}\right)$	$113 \cdot 09(11)$
$\mathrm{H}(1)-\mathrm{C}(1)-\mathrm{H}\left(1^{\prime}\right)$	$117(2)$
$\mathrm{H}(2)-\mathrm{C}(2)-\mathrm{H}\left(2^{\prime}\right)$	$107(2)$
$\mathrm{H}(3)-\mathrm{C}(3)-\mathrm{H}\left(3^{\prime}\right)$	$107(2)$
$\mathrm{H}(4)-\mathrm{C}(4)-\mathrm{H}\left(4^{\prime}\right)$	$108(2)$
$\mathrm{H}(5)-\mathrm{C}(5)-\mathrm{H}\left(5^{\prime}\right)$	$104(1)$

7 F. H. Moore, Acta Cryst., 1963, 16, 1169.
8 D. W. J. Cruickshank, D. E. Pilling, A. Bujosa, F. M. Lovell, and M. R. Truter, 'Computing Methods and the Phase Problem in X-Ray Crystal Analysis,' Pergamon Press, Oxford, 1961, p. 32.

The overall shape and conformation of the ring of (I) is similar to that of the cyclotetradecane ring which may be derived from the diamond structure. The $2 / m$ symmetry of ideal cyclotetradecane (Figure 1) is lost; in the actual ring of (I) only the inversion centre is maintained owing to the presence and the position of the four oxygen heteroatoms. The carbon and oxygen atoms of the independent unit of (I) roughly define two
the basis of intramolecular van der Waals repulsions between hydrogen atoms five bonds apart, and for the presence of heteroatoms in the ring. As shown in the ideal structure (Figure 3), there are many H $\cdots \mathrm{H}$ contact distances $<2 \AA$.

The insertion in the ideal ring of the oxygen atoms, according to the experimentally found positions, removes all but one $\mathrm{H} \cdots \mathrm{H}$ short interactions, in each

Figure 3 Structure of $1,3,8$, 10-tetraoxacyclotetradecane as viewed down the c axis, showing some of the most significant intraand inter-molecular contact distances
nearly perpendicular planes $\left(83^{\circ}\right)$, one of them defined by $\mathrm{C}(1), \mathrm{O}(1), \mathrm{C}(2), \mathrm{C}(3), \mathrm{C}(4)$, the five atoms of the lateral chain (root-mean-square distance $0 \cdot 158 \AA$) the other containing $\mathrm{C}(4), \mathrm{C}(5), \mathrm{O}(2), \mathrm{C}(1)$, the four atoms of the fold (root-mean-square distance $0.091 \AA$). Comparing the experimentally determined atomic positions of the ring skeleton of (I) and the atomic positions of the ideal ring with a proper set of molecular axes, the similarity between the two structures is immediately apparent (Table 4). The root mean-square deviation in an atomic position is ca. $0 \cdot 11 \AA$. Figure 4 reports the projections of the actual ring of (I) and of the ideal ring, in a plane perpendicular to the zig-zag lateral chain direction [the best line through $C(4), C(2)$, and $C(1)$ in the case of (I)]. The torsion angles of (I) are also similar to those (± 60 or 180°) of the structure derived from the diamond lattice. The deviations of the ring skeleton of (I) from the ideal structure may be tentatively accounted for on
fold region. The residual steric crowding of the hydrogen atoms is released by the distortion of the ring

Table 4

Comparison between the atomic co-ordinates (\AA) of the actual ring of (I) and those of the corresponding atoms of the cyclotetradecane ring as derived from the diamond lattice

	x	y	z	x	y	z
C(1)	$0 \cdot 49$	1.83	$2 \cdot 44$	$0 \cdot 445$	1.892	$2 \cdot 522$
$\mathrm{O}(1)$	$1 \cdot 23$	1.90	$1 \cdot 22$	$1 \cdot 333$	$1 \cdot 892$	$1 \cdot 261$
C(2)	$0 \cdot 45$	$2 \cdot 00$	$0 \cdot 04$	$0 \cdot 445$	1.892	0
C(3)	$1 \cdot 30$	1.90	$-1 \cdot 14$	$1 \cdot 333$	$1 \cdot 892$	-1.261
C(4)	$0 \cdot 49$	$1 \cdot 83$	-2.46	$0 \cdot 445$	$1 \cdot 892$	-2.522
C(5)	-0.40	$0 \cdot 63$	-2.64	-0.445	$0 \cdot 631$	-2.522
$\mathrm{O}(2)$	$0 \cdot 38$	-0.60	-2.54	0.445	-0.631	-2.522

skeleton in respect of the ideal structure. As a result, all $\mathrm{H} \cdots \mathrm{H}$ interactions in the actual ring of (I) are $>2.5 \AA$
with the exception of two interactions $[\mathrm{H}(5) \cdots \mathrm{H}(2)$ and $\left.\mathrm{H}\left(5^{\prime}\right) \cdots \mathrm{H}\left(2^{\prime}\right)\right]$ which are $2 \cdot 19 \AA$. All $\mathrm{C} \cdots \mathrm{C}$ and

(a)

Figure 4 (a) Projection of the actual ring of (I) in a plane perpendicular to the best line through $\mathrm{C}(4), \mathrm{C}(2)$, and $\mathrm{C}(1)$. (b) Projection of the ideal cyclotetradecane ring as derived from the diamond lattice, in a plane perpendicular to the zig-zag lateral chain direction
$\mathrm{C} \cdots \mathrm{O}$ intramolecular contact distances reach acceptable values (see Figure 2). The intermolecular van der
sidering the lengths of the lateral zig-zag chains as infinite and constituted by CH_{2} methylene groups only, we can derive for (I) a triclinic subcell, the parameters of which are: $a_{\mathrm{s}}=4 \cdot 3, b_{\mathrm{s}}=4.724$ (c axis of the monoclinic cell), $c_{\mathrm{os}}=2.52 \AA, \alpha_{\mathrm{s}}=90, \beta_{\mathrm{s}}=107, \gamma_{\mathrm{s}}=103^{\circ}$. The corresponding values for triclinic polyethylene are: $a=4.285, \quad b=4.82, \quad c=2.54 \AA, \quad \alpha=90, \quad \beta=110$, $\gamma=107^{\circ}$.
In both cases, the lateral zig-zag chains, which are adjacent in the direction of the a_{s} axis, are displaced along the c axis by $c_{o s} / 2$ (i.e., one CH_{2} group) whereas those which are adjacent in the direction of the b_{s} axis are not displaced along c (Figure 5). Using this (or any other) triclinic subcell, the $a_{8} \sin \beta$ and $b_{\mathrm{s}} \sin \alpha$ lengths of $4 \cdot 1$ and $4 \cdot 7 \AA$, are almost identical with the corresponding values quoted for the triclinic cells of polyethylene, of trans-polyalkenamers and of cyclic $\left[\mathrm{CH}_{2}\right]_{34}$.
The extrapolation of these findings to polymeric materials in order to explain the chain-folding phenomenon, cannot be made directly in a simple way. Nevertheless, we consider this present work sheds light on the possible structures of the folds in polymeric materials. Our results confirm that the chain-folding in triclinic polyethylene may be actuated by a succession of torsion angles nearly of the type $G+G+T$ $G+G+$ or $G-G-T G-G-(T=$ trans and

Figure 5 Projection on a plane perpendicular to c_{0} axis of the triclinic subcell of $1,3,8,10$-tetraoxacyclotetradecane

Waals interactions are also acceptable, no $\mathrm{C} \cdots \mathrm{C}$ distance being $<3 \cdot 60 \AA$, while the shortest $C \cdots O$ intermolecular distance between molecules superposed along the c axis is $3 \cdot 40 \AA$.

The packing of the rings face to face along the c axis of the unit cell, resembles that foreseen by Kitaigorodskii for triclinic even-numbered alkanes ${ }^{9}$ and later found for triclinic polyethylene, ${ }^{10}$ for triclinic transpolyalkenamers ${ }^{11}$ and for cyclic $\left[\mathrm{CH}_{2}\right]_{34} \cdot{ }^{12}$ By con-

[^2]$G=$ gauche) and by additional deformations of the bond angles, without sensibly altering the chain packing in the crystals. This agrees also with the results of minimum potential-energy calculations performed, for the A type of folding in orthorhombic polyethylene. ${ }^{13}$

We thank Professor. P. Corradini for helpful assistance and useful suggestions.
[2/808 Received, 10th April, 1972]
12 B. A. Newman and H. F. Kay, J. Appl. Phys., 1967, 38, 4105.
${ }_{13}$ G. Allegra, P. Corradini, and V. Petraccone, Macromolecules, 1971, 4, 770.

[^0]: ${ }^{1}$ L. Fiore and G. Nissim, Italian P. 903,271.
 ${ }^{2}$ J. D. Dunitz and J. A. Ibers, Perspectives in Structural Chem., 1968, 2, 1.

[^1]: ${ }^{3}$ J. D. Dunitz and E. F. Meyer, Helv. Chim. Acta, 1965, 48, 1441.
 ${ }^{4}$ C. J. Brown, J. Chem. Soc. (C), 1966, 1108.

[^2]: 9 A. J. Kitaigorodskii, 'Organic Chemical Crystallography,' Consultants Bureau, New York, 1961, p. 177.
 10 A. Turner-Jones, J. Polymer. Sci., 1962, 62, S, 53.
 ${ }^{11}$ G. Natta, I. W. Bassi, and G. Fagherazzi, European Polym. $J ., 1969,5,239$.

